Survival in Very Preterm Infants: An International Comparison of 10 National Neonatal Networks

Kjell Helenius, MD, Gunnar Sjörs, MD, Prakesh S. Shah, MD, Msc, Neena Modi, MD, Brian Reichman, MBChB, Naho Morisaki, MD, PhD, Satoshi Kusuda, MD, Kei Lui, MD, Brian A. Darlow, MD, Dirk Bassler, MD, MSc, Stellan Häkansson, MD, Mark Adams, MSc, Maximo Vento, MD, PhD, Franca Rusconi, MD, Tetsuya Isayama, MD, Shoo K. Lee, MBBS, PhD, Liisa Lehtonen, MD, on behalf of the International Network for Evaluating Outcomes (iNeo) of Neonates

OBJECTIVES: To compare survival rates and age at death among very preterm infants in 10 national and regional neonatal networks.

METHODS: A cohort study of very preterm infants, born between 24 and 29 weeks’ gestation and weighing <1500 g, admitted to participating neonatal units between 2007 and 2013 in the International Network for Evaluating Outcomes of Neonates. Survival was compared by using standardized ratios (SRs) comparing survival in each network to the survival estimate of the whole population.

RESULTS: Network populations differed with respect to rates of cesarean birth, exposure to antenatal steroids and birth in nontertiary hospitals. Network SRs for survival were highest in Japan (SR: 1.10; 99% confidence interval: 1.08–1.13) and lowest in Spain (SR: 0.88; 99% confidence interval: 0.85–0.90). The overall survival differed from 78% to 93% among networks, the difference being highest at 24 weeks’ gestation (range 35%–84%). Survival rates increased and differences between networks diminished with increasing gestational age (GA) (range 92%–98% at 29 weeks’ gestation); yet, relative differences in survival followed a similar pattern at all GAs. The median age at death varied from 4 days to 13 days across networks.

CONCLUSIONS: The network ranking of survival rates for very preterm infants remained largely unchanged as GA increased; however, survival rates showed marked variations at lower GAs. The median age at death also varied among networks. These findings warrant further assessment of the representativeness of the study populations, organization of perinatal services, national guidelines, philosophy of care at extreme GAs, and resources used for decision-making.

WHAT’S KNOWN ON THIS SUBJECT: Survival rates of very preterm infants vary among regions. International collaborations have been established to compare outcomes, but population-based comparisons have been difficult to accomplish.

WHAT THIS STUDY ADDS: This study shows variations in survival and age at death among very preterm infants in 10 national neonatal networks and provides insight into differences that affect comparisons. The findings warrant investigation of the organization of perinatal care in participating networks.
Preterm birth remains the major cause of infant mortality in high-income countries. Studies published in the last decade have shown variability in survival rates and outcomes among health care settings as well as within countries. Results from the Euro-Peristat project showed that neonatal survival among very preterm infants improved by 29% between 2004 and 2010 in 18 European countries, including those with high baseline survival. Such comparisons of different health care organizations worldwide can deliver important benchmarking information and potentially provide impetus for reviewing clinical practices, norms, and guidelines.

The International Network for Evaluating Outcomes of Neonates (iNeo) is a nonprofit collaboration among 10 national and regional neonatal networks: the Australian and New Zealand Neonatal Network (ANZNN), the Canadian Neonatal Network (CNN), the Finnish Medical Birth Register (FinMBR), the Israel Neonatal Network (INN), Neonatal Research Network Japan (NRNJ), the Spanish Neonatal Network (SEN1500), Sweden’s National Quality Registry for Neonatal Care (SNQ), the Swiss Neonatal Network (SwissNeoNet), Tuscany Neonatal Network (TuscanNN), and the United Kingdom Neonatal Collaborative (UKNC). The overarching aim of the iNeo collaboration is to compare outcomes of very preterm infants, understand reasons for variations, and, if possible, identify areas for improvement in care practices based on findings.

By using the iNeo data set, the objective of this study was to compare gestational age (GA)-specific survival rates for very preterm infants in all neonatal networks currently participating in the iNeo partnership and to explore variations in postnatal age at death among the very preterm population.

METHODS

Population and Study Design

This cohort study included infants born at 24 to 29 weeks’ gestation, weighing <1500 g at birth, and registered in participating network databases from 2007 to 2013 (2008–2013 for UKNC, 2009–2013 for TuscanNN). The criterion of 1500 g was used because some networks limited their data collection to infants with a birth weight <1500 g. Stillborn infants and delivery room deaths were not included because all networks do not routinely collect data on these infants. Because of variability in practices and philosophy of care provision at <24 weeks’ GA, we only included neonates born at ≥24 weeks’ gestation. Infants admitted for the first time to neonatal care after 36 weeks’ corrected GA were excluded. Data on infant characteristics and outcomes were extracted, as previously described. Transferred infants were included only once.

Population coverage of networks deviate from national birth statistics for various reasons. All neonatal units in Finland, New Zealand, and Tuscany participate in their national and regional neonatal networks; however, in Australia, apart from all tertiary neonatal units, only a few lower-level units participate in the ANZNN. In Canada, only tertiary neonatal units participate in the CNN. In Israel, all neonatal units participate, but infants with a birth weight >1500 g are not included. In Japan and Spain, not all neonatal units participate in the national networks. In Sweden, all neonatal units presently participate in the SNQ; however, the Skåne region is not included in this study because it joined in 2011. In Switzerland, all tertiary and large secondary (level IIb) neonatal units participate in SwissNeoNet. In the United Kingdom, all neonatal units in England, Wales, and Scotland participate in the UKNC; however, a number of neonatal units have not consented for participation in iNeo.

Covariates

GA was determined by the best estimate based on either early ultrasound, the timing of the last menstrual period, or physical examination after birth, in that order. Antenatal steroid use was defined as maternal receipt of antenatal steroids at any time before birth. Birth weight z scores were calculated according to birth weight references appropriate for each country. Mode of delivery was recorded as vaginal or cesarean. Multiple births included twins and higher-order multiples.

Outcomes

The primary outcome was survival to discharge from the hospital for infants admitted to neonatal care. Survival to transfer to a step-down hospital was used when follow-up was available only until the transfer. We analyzed survival in 1-week GA increments. As a secondary outcome, we compared postnatal age at death among nonsurvivors. Neonatal morbidities among iNeo survivors have been recently published.

Data Management

For most networks, defined data elements were either collected from patient records by designated abstractors according to network policies or entered directly into a central online database by participating units. For the UKNC, data were obtained from the National Neonatal Research Database managed by the Neonatal Data Analysis Unit, which contains a predefined extract from electronic patient records used in UK neonatal units. Finnish data were collected from the Medical Birth Register kept at the National Institute for Health and Welfare.
Statistical Analyses

Background characteristics of infants were compared by using the Pearson χ² test for categorical variables and the analysis of variance F test for continuous variables. Standardized ratios (SRs) were computed by using the indirect standardization approach. The pooled estimate of survival for the whole population was used as a standard. Each network was then compared with this standard, computed as the sum of predicted probabilities from a multivariable logistic regression model with adjustment for GA (linear), birth weight z score (linear and quadratic), multiple births, and sex. SR estimates were displayed graphically to identify countries with survival rates greater than and less than the average rate of all others with 99% confidence intervals (CIs). Because the SR estimate is calculated in relation to all other networks combined, it is not directly comparable among networks. No adjustment was made for the administration of antenatal steroids, cesarean birth, or birth in a nontertiary hospital because these are practice-related elements, and adjustment of these variables can lead to biased estimates in favor of underperforming systems. Missing data were not imputed. All statistical analyses and plots were conducted by using SAS version 9.3 (SAS Institute Inc, Cary, NC) or R version 2.2.

Research Ethics Approval

All iNeo collaborators hold relevant research ethics approvals for their data collection. Separate data sharing agreements were obtained from the executive committees of each network and the iNeo Coordinating Center in Toronto, Canada. Ethics approval for the iNeo collaboration was obtained from the Research Ethics Board at Mount Sinai Hospital in Toronto, Canada.

RESULTS

A total of 91,835 infants born between 24 and 29 weeks’ gestation were identified in the iNeo database during the study period. After excluding infants with a birth weight >1500 g (N = 3070) and infants admitted to neonatal care after 36 weeks’ corrected GA (N = 438), the final population consisted of 88,327 infants. The variations in care provision and organization of care among the networks are provided in Table 1, as reported by network directors. Table 2 describes characteristics of infants in each participating network. The population coverage of iNeo networks compared with national birth statistics ranged from 61% in Japan (NRNJ) to 100% in Sweden (SNQ), Switzerland (SwissNeoNet), and Tuscany (TuscanNN). Infant characteristics (including exposure to antenatal steroids, cesarean birth, and birth in a nontertiary hospital) were markedly different among networks.

Survival

Of the 88,327 included infants, 77,172 (87%) survived to discharge. Overall survival rates varied from 78% in SEN1500 to 93% in NNRNJ (Table 3). The differences in percentage points between networks with the lowest and highest survival rates were 49% at 24 weeks’ gestation (INN 35%, NNRNJ 84%), 32% at 25 weeks (INN 57%, NNRNJ 89%), 20% at 26 weeks (73% SEN1500, 93% NNRNJ), 12% at 27 weeks (82% SEN1500, 94% NNRNJ), 8% at 28 weeks (89% SEN1500, 97% NNRNJ), and 6% at 29 weeks (92% SEN1500, 98% SwissNeoNet). Survival increased as GA increased in all networks. Internetwork ranking of the survival rate followed a similar pattern at all GAs. The GA-specific survival rates are presented graphically in Fig 1. Estimated SRs comparing survival in each network to all other networks were higher in NNRNJ (SR: 1.10; 99% CI: 1.08–1.13) and lower in INN (SR: 0.91; 99% CI: 0.87–0.95) and SEN1500 (SR: 0.88; 99% CI 0.85–0.90) and overlapped with the 99% CI in ANZNN (SR: 1.01; 99% CI: 0.99–1.04), CNN (SR: 1.01; 99% CI: 0.99–1.04), FinMBR (SR: 1.01; 99% CI: 0.94–1.08), SNQ (SR: 1.03; 99% CI: 0.98–1.08), SwissNeoNet (SR: 0.99; 99% CI: 0.94–1.04), TuscanNN (SR: 0.95; 99% CI: 0.85–1.05), and UKNC (SR: 0.99; 99% CI: 0.97–1.01) (Fig 2). Pairwise comparisons among networks are presented in Supplemental Table 5.

Age at Death

A total of 11,155 infants did not survive to discharge. Age at death was available for 10,839 (97%) neonates, which is presented as a function of postnatal age in Fig 3 and Supplemental Fig 4. Median age at death for the entire population was 8 days, varying from 4 days to 13 days in the FinMBR and NNRNJ, respectively (Table 4). Among deaths, 14.6% occurred before 24 hours of age (6.9% TuscanNN, 26.8% FinMBR), 29.7% at 1 to 6 days of age (23.8% NNRNJ, 44.4% SwissNeoNet), 32.1% at 7 to 27 days of age (21.6% FinMBR, 37.3% TuscanNN), and 23.6% after 28 days of age (14.4% SwissNeoNet, 32.7% NNRNJ). Overall, the median postnatal age at death for the entire population remained stable at 8 days to 9 days over the study duration.

DISCUSSION

In this large, multinational study, we identified significant differences in the survival of very preterm infants, particularly at 24 to 27 weeks’ gestation. Survival increased and differences in survival between networks decreased with increasing GA, whereas internetwork ranking of survival remained relatively unchanged at each gestation. The median postnatal age at death ranged from 4 days to 13 days within networks.
The iNeo networks reached survival ranging from 78% to 93% in the very preterm infant population. Other international studies have shown similar survival rates: 77% to 91% for infants born at 22 to 31 weeks’ gestation in the European Health Care Outcomes, Performance and Efficiency (study in 2006–2008, 983% for infants born at 24 to 28 weeks’ gestation in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network (NICHD NRN) in 2008–2012, and 74% to 94% for infants born at 24 to 29 weeks’ gestation in the Effective Perinatal Intensive Care in Europe (EPICE) study in 2011–2013.

The European Health Care Outcomes, Performance and Efficiency study can also be used to validate our ranking order related to 3 countries because the ranking order of Sweden, Finland, and Italy was the same in both studies.

Some differences have to be noted in the study designs, such as the inclusion of delivery room deaths and limitations to tertiary hospitals. The EPICE study also included stillborn infants and delivery room deaths, but the proportion of live-born infants could be extracted from their data. Including nontertiary hospitals is likely to decrease overall survival rates, but excluding delivery room deaths is likely to overestimate survival.

Internetwork differences in survival were largest among infants born at 24 weeks’ gestation and decreased with increasing GA. However, networks with the lowest survival rates among 24-week infants continued to display low survival rates, and the ranking order related to 3 countries because the ranking order of Sweden, Finland, and Italy was the same in both studies.

The iNeo networks reached survival ranging from 78% to 93% in the very preterm infant population. Other international studies have shown similar survival rates: 77% to 91% for infants born at 22 to 31 weeks’ gestation in the European Health Care Outcomes, Performance and Efficiency (study in 2006–2008, 983% for infants born at 24 to 28 weeks’ gestation in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network (NICHD NRN) in 2008–2012, and 74% to 94% for infants born at 24 to 29 weeks’ gestation in the Effective Perinatal Intensive Care in Europe (EPICE) study in 2011–2013.

The European Health Care Outcomes, Performance and Efficiency study can also be used to validate our ranking order related to 3 countries because the ranking order of Sweden, Finland, and Italy was the same in both studies.

Some differences have to be noted in the study designs, such as the inclusion of delivery room deaths and limitations to tertiary hospitals. The EPICE study also included stillborn infants and delivery room deaths, but the proportion of live-born infants could be extracted from their data. Including nontertiary hospitals is likely to decrease overall survival rates, but excluding delivery room deaths is likely to overestimate survival.

Internetwork differences in survival were largest among infants born at 24 weeks’ gestation and decreased with increasing GA. However, networks with the lowest survival rates among 24-week infants continued to display low survival rates, but excluding delivery room deaths is likely to overestimate survival.

The table below summarizes the characteristics of the 10 National Neonatal Networks Participating in the iNeo study.

<table>
<thead>
<tr>
<th>Characteristics of the 10 National Neonatal Networks Participating in the iNeo</th>
<th>ANZNN</th>
<th>CNN</th>
<th>Fin MBR</th>
<th>INN</th>
<th>NRN</th>
<th>SEN1500</th>
<th>SNQa</th>
<th>SwissNeoNet</th>
<th>TuscanNNb</th>
<th>UKNCc</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate no. of births per year</td>
<td>360,000</td>
<td>380,000</td>
<td>80,000</td>
<td>160,000</td>
<td>1,080,000</td>
<td>480,000</td>
<td>90,000</td>
<td>90,000</td>
<td>300,000</td>
<td>980,000</td>
<td>3,410,000</td>
</tr>
<tr>
<td>Units from which data are included in iNeo</td>
<td>56</td>
<td>28</td>
<td>30</td>
<td>27</td>
<td>75</td>
<td>61</td>
<td>28</td>
<td>12</td>
<td>24</td>
<td>131</td>
<td>470</td>
</tr>
<tr>
<td>Tertiary neonatal units in the country or region</td>
<td>29</td>
<td>28</td>
<td>5</td>
<td>23</td>
<td>93</td>
<td>50</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>49</td>
<td>300</td>
</tr>
<tr>
<td>Delivery room deaths included in database</td>
<td>No</td>
<td>Partial</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Partial</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Data from step-down units included</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Proportion of infants in network compared with national birth statistics</td>
<td>92.5%</td>
<td>92.5%</td>
<td>99.1%</td>
<td>95.0%</td>
<td>61.1%</td>
<td>76.1%a</td>
<td>100%</td>
<td>99.7%</td>
<td>100%</td>
<td>73.5%</td>
<td>75.6%</td>
</tr>
</tbody>
</table>

a Sweden, excluding the Skåne region.
d Proportion of infants born at 24–29 weeks’ gestation in each network compared with corresponding numbers in national birth statistics.
e Of all infants born at <28 weeks’ GA.
TABLE 2 Population Characteristics of Infants (24–29 Weeks’ Gestation, Birth Weight <1500 g) Born Between 2007 and 2013 and Admitted to Neonatal Care in iNeo Contributing Networks

<table>
<thead>
<tr>
<th>Study infants, n (%),</th>
<th>ANZNN</th>
<th>CNN</th>
<th>FinMBR</th>
<th>INN</th>
<th>NRNJ</th>
<th>SEN1500</th>
<th>SNQ</th>
<th>SwissNeoNet</th>
<th>TuscanNN</th>
<th>UKNC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Born in tertiary hospital, n (%),</td>
<td>888 (94.2)</td>
<td>1633 (94.5)</td>
<td>5441 (100)</td>
<td>18421 (99.9)</td>
<td>10 818 (94.1)</td>
<td>226 (95.6)</td>
<td>3124 (93.4)</td>
<td>2675 (96.4)</td>
<td>705 (95.7)</td>
<td>19 053 (93.3)</td>
<td>82 101 (66.5)</td>
</tr>
<tr>
<td>GA (wks), mean (SD),</td>
<td>23.0 (1.6)</td>
<td>26.9 (1.6)</td>
<td>27.0 (1.6)</td>
<td>27.1 (1.6)</td>
<td>27.0 (1.6)</td>
</tr>
<tr>
<td>Birth weight (g), mean (SD),</td>
<td>993 (251)</td>
<td>986 (246)</td>
<td>980 (259)</td>
<td>972 (247)</td>
<td>927 (256)</td>
<td>978 (247)</td>
<td>986 (256)</td>
<td>986 (256)</td>
<td>986 (256)</td>
<td>986 (256)</td>
<td>986 (256)</td>
</tr>
<tr>
<td>Birth weight score, mean (SD),</td>
<td>0.09 (0.96)</td>
<td>−0.09 (0.83)</td>
<td>−0.18 (0.91)</td>
<td>−0.10 (0.83)</td>
<td>−0.17 (0.98)</td>
<td>−0.08 (0.82)</td>
<td>−0.12 (0.86)</td>
<td>−0.17 (0.99)</td>
<td>−0.10 (0.83)</td>
<td>−0.17 (0.99)</td>
<td>−0.10 (0.83)</td>
</tr>
<tr>
<td>Proportion of infants 24 wks</td>
<td>28.4</td>
</tr>
<tr>
<td>GA (wks), proportion born at >36 wks</td>
<td>26 (0.2)</td>
<td>83 (0.6)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>5 (0.03)</td>
<td>321 (3.0)</td>
<td>0 (0)</td>
<td>3 (0.1)</td>
<td>0 (0)</td>
<td>438 (1.4)</td>
<td>438 (1.4)</td>
</tr>
<tr>
<td>Infants included in database</td>
<td>14 043</td>
<td>15 688</td>
<td>17 288</td>
<td>5441</td>
<td>18 451</td>
<td>10 895</td>
<td>3346</td>
<td>2775</td>
<td>737</td>
<td>20 951</td>
<td>91 835</td>
</tr>
<tr>
<td>Infants excluded due to birth weight >1500 g, n (%)</td>
<td>778 (5.5)</td>
<td>717 (5.2)</td>
<td>95 (5.5)</td>
<td>5 (0.03)</td>
<td>148 (1.4)</td>
<td>222 (6.8)</td>
<td>97 (5.5)</td>
<td>32 (4.3)</td>
<td>976 (4.7)</td>
<td>3070 (3.3)</td>
<td>3070 (3.3)</td>
</tr>
</tbody>
</table>

* Sweden, excluding the Skåne region.

‡ 2008–2013.

§ P < 0.01.
TABLE 3 GA-Specific Survival Rates Among Infants (24–29 Weeks’ Gestation, Birth Weight <1500 g) Born Between 2007 and 2013 and Admitted to Neonatal Care in the Neo Networks

<table>
<thead>
<tr>
<th>GA 24/7–26/7</th>
<th>ANZNN n/N (%)</th>
<th>CNN n/N (%)</th>
<th>FinMBR n/N (%)</th>
<th>INN n/N (%)</th>
<th>NRN n/N (%)</th>
<th>SEN1500 n/N (%)</th>
<th>SNQ n/N (%)</th>
<th>SwissNeoNet n/N (%)</th>
<th>TuscanNeoN n/N (%)</th>
<th>UKNeoNet n/N (%)</th>
<th>Total n/N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/7–25/7</td>
<td>793/1929 (43.4)</td>
<td>758/1119 (68.1)</td>
<td>110/156 (70.5)</td>
<td>188/482 (34.9)</td>
<td>1743/2082 (84.3)</td>
<td>312/896 (36.0)</td>
<td>205/282 (70.2)</td>
<td>107/186 (57.5)</td>
<td>50/94 (53.2)</td>
<td>1308/2053 (63.7)</td>
<td>5532/8631 (64.1)</td>
</tr>
<tr>
<td>25/7–26/7</td>
<td>1321/1655 (79.8)</td>
<td>1445/1829 (78.7)</td>
<td>381/684 (54.7)</td>
<td>2155/2413 (89.3)</td>
<td>714/1200 (59.5)</td>
<td>335/395 (84.8)</td>
<td>214/319 (67.1)</td>
<td>58/81 (71.6)</td>
<td>1815/2386 (77.3)</td>
<td>8593/11119 (77.3)</td>
<td></td>
</tr>
<tr>
<td>26/7–27/7</td>
<td>1853/2117 (87.5)</td>
<td>1771/2043 (87.0)</td>
<td>198/231 (84.8)</td>
<td>659/847 (77.8)</td>
<td>2659/2850 (93.8)</td>
<td>1147/1568 (73.2)</td>
<td>450/509 (88.4)</td>
<td>384/459 (85.8)</td>
<td>60/78 (78.9)</td>
<td>2263/3091 (75.0)</td>
<td>11810/13792 (85.6)</td>
</tr>
<tr>
<td>27/7–28/7</td>
<td>2163/2346 (92.2)</td>
<td>2208/2412 (91.5)</td>
<td>295/329 (88.7)</td>
<td>109/947 (85.4)</td>
<td>3116/3501 (88.4)</td>
<td>1507/1842 (81.8)</td>
<td>539/582 (92.6)</td>
<td>434/478 (90.8)</td>
<td>107/127 (83.5)</td>
<td>3286/3657 (89.9)</td>
<td>14867/16021 (90.3)</td>
</tr>
<tr>
<td>28/7–29/7</td>
<td>2785/2939 (94.8)</td>
<td>2599/2703 (94.7)</td>
<td>336/582 (92.8)</td>
<td>1055/1156 (92.0)</td>
<td>3714/3850 (94.4)</td>
<td>1799/2120 (88.6)</td>
<td>624/672 (92.9)</td>
<td>551/581 (94.8)</td>
<td>140/148 (94.6)</td>
<td>40483/4383 (92.8)</td>
<td>17793/19004 (93.7)</td>
</tr>
<tr>
<td>29/7–30/7</td>
<td>2870/2953 (97.2)</td>
<td>2628/2710 (98.9)</td>
<td>347/558 (90.9)</td>
<td>1270/1345 (94.4)</td>
<td>3806/3925 (97.0)</td>
<td>2348/2490 (92.4)</td>
<td>650/674 (96.4)</td>
<td>637/653 (97.5)</td>
<td>170/177 (96.0)</td>
<td>42474/4425 (96.0)</td>
<td>18971/19760 (96.0)</td>
</tr>
<tr>
<td>30/7–31/7</td>
<td>11785/13239 (93.0)</td>
<td>11351/12888 (88.1)</td>
<td>1439/1633 (88.1)</td>
<td>4550/5441 (79.8)</td>
<td>17192/18421 (93.3)</td>
<td>7987/10226 (78.1)</td>
<td>2803/3124 (89.7)</td>
<td>2327/2675 (87.0)</td>
<td>585/705 (83.0)</td>
<td>17353/19975 (88.9)</td>
<td>77172/88327 (87.4)</td>
</tr>
</tbody>
</table>

a Sweden, excluding the Skåne region.

However, we must also recognize our limitations. First, varying national coverage of births in participating networks might have influenced our results. It is likely that units not participating or not providing data may have lower survival rates compared with participating units. Preliminary data from Japan suggest that units not contributing to the NRNJ have mortality rates that are 1.1- to 1.5-fold higher than NRNJ contributors for infants of <27 weeks’ gestation (N.M., unpublished observations). Some networks limited their data collection to infants with a birth weight of <1500 g, which led us to restrict our whole data set accordingly. This might introduce bias because some well-grown infants in the higher-GA range are excluded. However, this bias is similar in all networks, and the results were adjusted for country-specific birth weight z scores. Likewise, some networks collect data only from tertiary neonatal units, which is likely to introduce a bias because very preterm infants born in nontertiary hospitals have

![Graph](image-url)

FIGURE 1
GA-specific survival for infants (24–29 weeks’ gestation, birth weight <1500 g) born between 2007 and 2013 and admitted to neonatal care in the iNeo networks.

![Graph](image-url)

FIGURE 2
SRs of survival for infants (24–29 weeks’ gestation, birth weight <1500 g) born during the study period (2007–2013) and admitted to neonatal care in each iNeo network. *SRs comparing the survival in each network to all other networks combined. Vertical bars are the estimated 99% CIs of the SRs. The dotted curves represent the 99% control limits expected under the null hypothesis of similar outcome rates (SR = 1).
higher mortality rates. These issues should be considered when interpreting the results. Ideally, survival rates for each network should be calculated by using all deliveries of live fetuses at presentation to the hospital as the denominator, as done by the Extremely Preterm Infants in Sweden Study Group; however, such data are not available to all iNeo contributors. Second, in some networks, data were only available until transfer to a step-down hospital. Nonetheless, death rates for very preterm infants after transfer to step-down hospitals were low in Finland because only 0.4% of the infants died after transfer but before discharge from the hospital. In Canada, Synnes et al reported a 0.7% death rate between discharge from tertiary neonatal care and 18 months to 24 months of age. Third, data on delivery room deaths and stillbirths were not available; therefore, the results may not be comparable to other groups and should be used cautiously for counseling. Fourth, data on maternal conditions (eg, hypertensive disorders, preterm rupture of membranes, and perinatal infections) and reasons for prematurity (spontaneous preterm birth versus maternal or fetal indication for preterm birth) were not available in sufficient detail to be used in the analyses. However, as shown by the EPICE group, maternal factors have little effect on the variations in outcomes.

In the future, similar comparisons should attempt to include all deliveries of live fetuses at presentation to the hospital. Meanwhile, networks should aim to increase the number of participating neonatal units to achieve complete population coverage, enable a comprehensive assessment of outcomes, and avoid selection biases in their evaluations.

CONCLUSIONS

Large variations in the survival of very preterm infants were evident among iNeo networks. Internetwork
differences in survival were largest at 24 weeks gestation, and relative network ranking of the survival rate persisted across the studied GAs. For nonsurvivors, the median age at death varied from 4 days to 13 days among the networks. Our results warrant further assessment of the organization of perinatal services, national guidelines, philosophy of care, and resources used for decision-making.

We acknowledge all investigators and data abstractors of the networks participating in the iNeo consortium for their diligent work. We also thank staff at the Maternal-Infant Care Research Centre in Toronto, Ontario, for organizational, statistical, and editorial support. Dr Shah had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

ACKNOWLEDGMENTS

We acknowledge all investigators and data abstractors of the networks and thank our research fellows and staff for their diligent work. We also thank the Maternal-Infant Care Research Centre in Toronto, Ontario, for organizational, statistical, and editorial support. Dr Shah had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

TABLE 4

<table>
<thead>
<tr>
<th>ANZ N, N = 1450</th>
<th>CNN, N = 1531</th>
<th>FmMBR, N = 194</th>
<th>INNI, N = 1091</th>
<th>NNJL, N = 1206</th>
<th>SNQ, N = 311</th>
<th>SwissNeoNet N = 343</th>
<th>TuscanNN, N = 102</th>
<th>UKNC*, N = 261</th>
<th>All, N = 10839</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median (IQR) age at death, d</td>
<td>8 (3–30)</td>
<td>10 (3–28)</td>
<td>4 (1–15)</td>
<td>7 (3–19)</td>
<td>13 (3–42)</td>
<td>8 (3–20)</td>
<td>7 (2–24)</td>
<td>6 (2–18)</td>
<td>8 (2–19)</td>
</tr>
<tr>
<td>No. missing</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>23</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Age at death <1 d, n (%)</td>
<td>146 (10.0)</td>
<td>159 (9.9)</td>
<td>52 (26.8)</td>
<td>179 (16.4)</td>
<td>155 (12.9)</td>
<td>253 (13.4)</td>
<td>10 (1)</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Age at death 1–6 d, n (%)</td>
<td>490 (34.4)</td>
<td>478 (31.2)</td>
<td>70 (35.1)</td>
<td>343 (31.4)</td>
<td>257 (20.9)</td>
<td>627 (31.6)</td>
<td>97 (31.2)</td>
<td>154 (44.4)</td>
<td>40 (18.2)</td>
</tr>
<tr>
<td>Age at death 7–27 d, n (%)</td>
<td>408 (28.2)</td>
<td>558 (36.5)</td>
<td>42 (21.1)</td>
<td>338 (30.7)</td>
<td>370 (30.7)</td>
<td>732 (36.9)</td>
<td>92 (29.6)</td>
<td>109 (31.4)</td>
<td>38 (37.3)</td>
</tr>
<tr>
<td>Age at death ≥28 d, n (%)</td>
<td>396 (27.3)</td>
<td>356 (23.3)</td>
<td>30 (15.1)</td>
<td>211 (18.3)</td>
<td>394 (32.7)</td>
<td>361 (18.2)</td>
<td>70 (22.5)</td>
<td>50 (14.4)</td>
<td>17 (16.7)</td>
</tr>
<tr>
<td>Median age at death in days according to years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>8</td>
<td>9.5</td>
<td>7</td>
<td>7.5</td>
<td>11</td>
<td>4</td>
<td>5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2008</td>
<td>9</td>
<td>11.5</td>
<td>3</td>
<td>8</td>
<td>14</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>2009</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>6.5</td>
<td>15</td>
<td>8</td>
<td>16</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2010</td>
<td>10</td>
<td>11</td>
<td>3.5</td>
<td>9</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>2011</td>
<td>11</td>
<td>9</td>
<td></td>
<td>7</td>
<td>125</td>
<td>9</td>
<td>13</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>2012</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>6</td>
<td>11</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>2013</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td></td>
<td>21</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

c Percentage of all nonsurvivors in each network.
Nepean Hospital, Monash Medical Centre (Melbourne, Victoria); Lyn Downe, MBBS, Vijay Shingde, MBChB (New South Wales); Michael Stewart, MBBS, MD, newborn Emergency Transport Service (Victoria); Barbara Bajuk, MPH,* Newborn and Pregnancy Services Network (New South Wales); Andrew Berry, MBBS, Newborn and Paediatric Emergency Transport Service (New South Wales); Rod Hunt, MBChB, Royal Children’s Hospital (Parkville, Victoria); Charles Kilburn, MBChB, Royal Darwin Hospital (Darwin, Northern Territory); Tony De Paoli, MBBS, Royal Hobart Hospital (Hobart, Tasmania); Kei Lui, MBBS,* Royal Hospital for Women (Sydney, New South Wales); Mary Paradisis, MBChB, Royal North Shore Hospital (Sydney, New South Wales); Ingrid Rieger, MBChB, and Shelley Reid, RN,* Royal Prince Alfred Hospital (Sydney, New South Wales); David Cartwright, MBChB, and Pieter Koorts, MBBS, Royal Brisbane and Women’s Hospital (Brisbane, Queensland); Carl Kuschel, MBChB, and Lex Doyle, MBBS, MD, Royal Women’s Hospital (Melbourne, Victoria); Andrew Numa, MBChB, Sydney Children’s Hospital (Sydney, New South Wales); Hazel Carlisle, MBChB, Canberra Hospital (Canberra, Australian Capital Territory); Nadia Badawi, MBChB, PhD, and Robert Halliday, MBBS, The Children’s Hospital at Westmead (Sydney, New South Wales); Guan Koh, MBChB,* The Townsville Hospital (Townsville, Queensland); Steven Resnick, MBBS, Western Australia Neonatal Transport Service; Melissa Luig, MBChB, Westmead Hospital (Sydney, New South Wales); Chad Anderson, MBChB, Women’s and Children’s Hospital (South Australia); Georgina Chambers, MBA, PhD,* National Perinatal Epidemiology and Statistics Unit, University of New South Wales (Sydney, New South Wales); Adrienne Lynn, MBBS, Brian Darlow, MD, Christchurch Women’s Hospital (New Zealand); Roland Broadbent, MBChB,* Dunedin Hospital (New Zealand); Lindsay Mildenhall, MBChB, Middlemore Hospital (New Zealand); Malcolm Batten, MBChB, Auckland City Hospital (New Zealand); Jutta van den Boom, MBBS,* North Shore and Waitakere Hospitals (New Zealand); David Bourchier, MBChB, and Lee Carpenter, RN,* Waikato Hospital (New Zealand); Vaughan Richardson, MBChB, Wellington Women’s Hospital (New Zealand); Victor Samuel Rajadurai, MBBS, MD,* KK Women’s and Children’s Hospital (Little India, Singapore).

*denotes the ANZNN Executive Committee.

CNN: Prakash S. Shah, MD, MSc (director, CNN and site investigator), Mount Sinai Hospital (Toronto, Ontario); Adele Harrison, MD, MBChB, Victoria General Hospital (Victoria, British Columbia); Anne Synnes, MDCM, MHSc, and Joseph Ting, MD, BC, Women’s Hospital and Health Centre (Vancouver, British Columbia); Zenon Cieslak, MD, Royal Columbian Hospital (New Westminster, British Columbia); Rebecca Sherlock, MD, Surrey Memorial Hospital (Surrey, British Columbia); Wendy Yee, MD, Foothills Medical Centre (Calgary, Alberta); Khalid Aziz, MBBS, MA, MEd, and Jennifer Toye, MD, Royal Alexandra Hospital (Edmonton, Alberta); Carlos Fajardo, MD, Alberta Children’s Hospital (Calgary, Alberta); ZarinKalapesi, MD, Regina General Hospital (Regina, Saskatchewan); Koravangattu Sankaran, MD, MBBS, and Sibasis Daspal, MD, Royal University Hospital (Saskatoon, Saskatchewan); Mary Seshia, MBChB, Winnipeg Health Sciences Centre (Winnipeg, Manitoba); Brian Reichman, MBChB (director, INN), Sheba Medical Center (Tel Hashomer); Eli

General Hospital (Winnipeg, Manitoba); Amit Mukerji, MD, Hamilton Health Sciences Centre (Hamilton, Ontario); Orlando Da Silva, MD, MSc, London Health Sciences Centre (London, Ontario); Chucks Nwaesei, MD, Windsor Regional Hospital (Windsor, Ontario); Kyong-Soon Lee, MD, MSc, Hospital for Sick Children (Toronto, Ontario); Michael Dunn, MD, Sunnybrook Health Sciences Centre (Toronto, Ontario); Brigitte Lemyre, MD, Children’s Hospital of Eastern Ontario and Ottawa General Hospital (Ottawa, Ontario); Kimberly Dow, MD, Kingston General Hospital (Kingston, Ontario); Ermelinda Pelausa, MD, Jewish General Hospital (Montreal, Quebec); Keith Barrington, MBChB, Hôpital Sainte-Justine (Montreal, Quebec); Christine Drolet, MD, and Bruno Piedboeuf, MD, Centre Hospitalier Universitaire de Quebec (Sainte Foy, Quebec); Martine Claveau, MSc, LLM, NNP, and Marc Beltempo, MD, McGill University Health Centre (Montreal, Quebec); Valerie Bertelle, MD, and Edith Masse, MD, Centre Hospitalier Universitaire de Sherbrooke (Sherbrooke, Quebec); Roderick Canning, MD, Moncton Hospital (Moncton, New Brunswick); Hala Makary, MD, Dr Everett Chalmers Hospital (Fredericton, New Brunswick); Cecil Ojah, MBBS, and Luis Monterrosa, MD, Saint John Regional Hospital (Saint John, New Brunswick); Akhil Deshpandey, MBBS, MRCPI, Janeway Children’s Health and Rehabilitation Centre (St. John’s, Newfoundland); Jehier Afifi, MBChB, MSc, IWK Health Centre (Halifax, Nova Scotia); Andrzej Kajetanowicz, MD, Cape Breton Regional Hospital (Sydney, Nova Scotia); and Shoo K. Lee, MBBS, PhD (chairman, CNN), Mount Sinai Hospital (Toronto, Ontario).

INN: Brian Reichman, MBChB (director, INN), Sheba Medical Center (Tel Hashomer); Eli
SNQ: Jiri Kofron, MD, Södra Älvsborgs Sjukhus (Borås); Katarina Strand Brodd, MD, Mälarsjukhuset (Eskilstuna); Andreas Odlin, MD, Falu Lasarett (Falun); Lars Alberg, MD, Gällivare Sjukhus (Gällivare); Sofia Arwehed, MD, Gävle Sjukhus (Gävle); Eva Engström, MD, SU/Östra (Göteborg); Anna Kasemo, MD, Länsjukhuset (Halmstad); Charlotte Ekelund, MD, Helsingborgs Lasarett (Helsingborg); Lars Åhman, MD, Hudiksvalls Sjukhus (Hudiksvall); Fredrik Ingemarsson, MD, Länsjukhuset Ryhov (Jönköping); Laura Österdahl, MD, Länsjukhuset (Kalmar); Pernilla Thurn, MD, Blekingesjukhuset (Karlskrona); Eva Albinsson, MD, Centraljukhuset (Karlstad); Bo Selander, MD, Centralssjukhuset (Kristianstad); Fredrik Lundberg, MD, Universitetssjukhuset (Linköping); Ingela Heimdahl, MD, Sunderby sjukhus (Uleå); Ola Hafström, MD, Skånes Universitetssjukhus (Malmö/Lund); Erik Wejryd, MD, Vrinnevisjukhuset (Norrköping); Johanna Kuusima-Löf bom, MD, Skellefteå Lasarett (Skellefteå); Ellen-Elisabeth Lund, MD, Kärnsjukhuset Skaraborg (Skövde); Annelie Thorén, MD, Sollefteå Sjukhus (Sollefteå); Bou bou Hallberg, MD, Karolinska Sjukhuset (Stockholm); Eva Berggren Broström, MD, Södersjukhuset, (Stockholm); Torbjörn Hertzberg, MD, Sophiahemmet (Stockholm); Björn Stjernstedt, MD, Länsjukhuset (Sundsvall); Johan Robinson, MD, Norra Älvsborgs Länsjukhus (Trollhättan); Aijaz Farooqi, MD, Nordlands Universitetssjukhus (Umeå); Erik Normann, MD, Akademiska Barnsjukhuset (Uppsala); Magnus Fredriksson, MD, Visby Lasarett (Visby); Anders Palm, MD, Västerviks Sjukhus (Västervik); Åsa Hedblom, MD, Centrallasaretet (Västerås); Kenneth Sjöberg, MD, Centrallasaretet (Växjö); Leif Thorbjörnsson, MD, Lasarettet (Ystad); Andreas Ohlin, MD, Universitetssjukhuset (Örebro); Rein Florell, MD, Örnsköldsviks Sjukhus (Örnsköldsvik); and Agneta Smedsaa-Lövenberg, MD, Östersunds Sjukhus (Östersund).

SwissNeoNet: Mark Adams, MsC (coordinator, SwissNeoNet); Philipp Meyer, MD, and Claudia Anderegg, MD, Cantonal Hospital, Children’s Clinic (Aarau); Sven Schulze, MD, University Children’s Hospital (Basel); Mathias Nelle, MD, University Hospital (Berne); Bendicht Wagner, MD, University Hospital (Berne); Walter Bär, MD, Children’s Hospital (Chur); Grégoire Kaczala, MD, Cantonal Hospital (Fribourg); Riccardo E. Pfister, MD, Geneva University Hospital (Geneva); Jean-François Tolsa, MD, and Matthias Roth, MD, University Hospital (CHUV) (Lausanne); Thomas M. Berger, MD, Children’s Hospital (Lucerne); Bernhard Laubscher, MD, Cantonal Hospital (Neuchatel); Andreas Malzacher, MD, Cantonal Hospital (St. Gallen); John P. Micallef, MD, Children’s Hospital (St. Gallen); Lukas Hegi, MD, Cantonal Hospital (Winterthur); Dirk Bassler, MD, and Romaine Arlettaz, MD, University Hospital Zurich (Zurich); and Vera Bernet, MD, University Children’s Hospital (Zurich).

UKNC: Santanu Bag, MBChB, Bedford Hospital (Bedford, Bedfordshire); Jonathan Kefas, MBChB, Lister Hospital (Stevenage, Hertfordshire); Oliver Rackham, MBChB, Arrowe Park Hospital (Wirral, Merseyside); Arumugavelu Thirumurigan, MBChB, Leighton Hospital (Crewe, Cheshire); Bill Yoxall, MBChB, Liverpool Women’s Hospital (Liverpool, Merseyside); Tim McBride, MBChB, Ormskirk District General Hospital (Ormskirk, Lancashire); Delyth Webb, MBChB, Warrington Hospital (Warrington, Cheshire); Laweh Amegavie, MBChB, Whiston Hospital (Prescot, Merseyside);
Ahmed Hassan, MBChB, Broomfield Hospital (Chelmsford, Essex); Priyadarshan Ambadkar, MBChB, James Paget Hospital (Gorleston, Norfolk); Mark Dyke, MBChB, Norfolk and Norwich University Hospital (Norwich, Norfolk); Seif Babiker, MBChB, Peterborough City Hospital (Peterborough, Cambridgeshire); Susan Rubin, MBChB, Queen Elizabeth Hospital, King’s Lynn (Birmingham, West Midlands); Amanda Ogilvy-Stuart, MBChB, Rosie Maternity Hospital (Addenbrookes, Cambridge, Cambridgeshire); Nagesh Panasa, MBChB, North Manchester General Hospital (Manchester, Greater Manchester); Paul Settle, MBChB, Royal Bolton Hospital (Bolton, Lancashire); Jonathan Moise, MBChB, Royal Oldham Hospital (Manchester, Greater Manchester); Ngozi Edi-Osagie, MBChB, St Mary’s Hospital (Manchester, Greater Manchester); Christos Zipitis, MBChB, The Robert Albert Edward Infirmary (Wrightington, Greater Manchester); Carrie Heal, MBChB, Stepping Hill Hospital (Stockport, Cheshire); Jacqueline Birch, MBChB, Tameside General Hospital (Ashton-under-Lyne, Lancashire); Abdul Hasib, MBChB, Darent Valley Hospital (Dartford, Kent); Aung Soe, MBChB, Medway Maritime Hospital (Gillingham, Kent); Niraj Kumar, MBChB, Queen Elizabeth The Queen Mother Hospital (Margate, Kent); Hamudi Kisat, MBChB, Tunbridge Wells Hospital (Tunbridge Wells, Kent); Vimal Vasu, MBChB, William Harvey Hospital (Ashford, Kent); Meera Lama, MBChB, Lancashire Women & Newborn Centre (Burnley, Lancashire); Richa Gupta, MBChB, Royal Preston Hospital (Preston, Lancashire); Chris Rawlingson, MBChB, Blackpool Victoria Hospital (Blackpool, Lancashire); Tim Wickham, MBChB, Barnet Hospital (Barnet, Hertfordshire); Karin Schwarz, MBChB, Chase Farm Hospital (Enfield, Middlesex); Van Sommen, MBChB, The Royal Free Hospital (Hampstead, London); Sara Watkin, MBChB, University College Hospital (Fitzrovia, London); Aashish Gupta, MBChB, Basildon Hospital (Basildon, Essex); Narendra Aladangady, MBChB, Homerton Hospital (Hackney, London); Imad Ali, MBChB, Newham General Hospital (Newham, London); Lesley Alsford, MBChB, North Middlesex University Hospital (Edmonton, London); Khalid Mannan, MBChB, Queen’s Hospital (Romford, Essex); Ebel Rainer, MBChB, The Royal London Hospital (Whitechapel, London); Nicholas Wilson, MBChB, Whips Cross University Hospital (Whips Cross, London); Mark Thomas, MBChB, Chelsea and Westminster Hospital (Chelsea, London); Ramnik Mathur, MBChB, Ealing Hospital (Southall, London); Michele Cruwys, MBChB, Hillingdon Hospital (Hillingdon, London); Sunit Godambe, MBChB, Queen Charlotte’s Hospital (East Acton, London); Sunit Godambe, MBChB, St Mary’s Hospital (Westminster, London); Timothy Watts, MBChB, Guy’s and St Thomas’ Hospital (Lambeth, London); Jauro Kuna, MBChB, University Hospital Lewisham (Lewisham, London); John Chang, MBChB, Croydon University Hospital (Croydon, Surrey); Jon Filkin, MBChB, Kingston Hospital (Kingston, London); Charlotte Huddy, MBChB, St George’s Hospital (Wandsworth, London); Ruth Shephard, MBChB, St. Helier Hospital (Merton, London); Krzysztof Zieba, MBChB, Northwick Park Hospital (Brent, London); Patti Rao, MBChB, Kettering General Hospital (Kettering, Northamptonshire); Andrew Currie, MBChB, Leicester General Hospital (Leicester, Leicestershire); Andrew Currie, MBChB, Leicester Royal Infirmary (Leicester, Leicestershire); Azhar Manzoor, MBChB, Queen’s Hospital, Burton-on-Trent (Burton-on-Trent, Staffordshire); Munir Ahmed, MBChB, Alexandra Hospital (Redditch, Worcestershire); Phil Simmons, MBChB, Birmingham Heartlands Hospital (Birmingham, West Midlands); Julie Nycyk, MBChB, City Hospital (Birmingham, West Midlands); Phil Simmons, MBChB, Good Hope Hospital (Birmingham, West Midlands); Andrew Gallagher, MBChB, Worcestershire Royal Hospital (Worcester, Worcestershire); Chrisantha Halahakoon, MBChB, New Cross Hospital (Wolverhampton, West Midlands); Sanjeev Deshpande, MBChB, Royal Shrewsbury Hospital (Shrewsbury, Shropshire); Anand Mohite, MBChB, Russells Hall Hospital (Dudley, West Midlands); Kate Palmer, MBChB, University Hospital of North Staffordshire (Hartshill, Staffordshire); Alan Gibson, MBChB, Jessop Hospital (Sheffield, South Yorkshire); Mehdi Garbash, MBChB, Darlington Memorial Hospital (Darlington, County Durham); Mithilesh Lal, MBChB, James Cook University Hospital (Middlesbrough, North Yorkshire); Majd Abu-Harb, MBChB, Sunderland Royal Hospital (Sunderland, Tyne and Wear); Mehdi Garbash, MBChB, University Hospital of North Durham (Durham, Durham); Róisín McKeon-Carter, MBChB, Derriford Hospital (Plymouth, Devon); Michael Selter, MBChB, North Devon District Hospital (Barnstaple, Devon); Paul Munyard, MBChB, Royal Cornwall Hospital (Truro, Cornwall); Vaughan Lewis, MBChB, Royal Devon and Exeter Hospital (Exeter, Devon); Mala Raman, MBChB, Torbay Hospital (Torquay, Devon); Graham Whincup, MBChB, Conquest Hospital (St. Leonards-on-Sea, East Sussex); Abdus Mallik, MBChB, Frimley Park Hospital (Frimley, Surrey); Philip Amess, MBChB, Princess Royal Hospital (Telford, Shropshire); Charles Godden, MBChB, Royal Surrey County Hospital (Guildford, Surrey); Philip Amess, MBChB, Royal Sussex
FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.
FUNDING: Funding for International Network for Evaluating Outcomes of Neonates has been provided by a Canadian Institutes of Health Research Chair in Reproductive and Child Health Services and Policy Research (APR-125540) held by P.S.S. The Australian and New Zealand Neonatal Network is predominantly funded by membership contributions from participating centers. The Canadian Neonatal Network is funded by financial support from the Canadian Institutes of Health Research (FRN87518, PBN150642) and individual participating centers. The Finnish Medical Birth Register is governmentally funded and kept by the National Institute for Health and Welfare (THL). The Israel Neonatal Network very low birth weight infant database is partially funded by the Israel Center for Disease Control and the Ministry of Health. The Neonatal Research Network Japan is partly funded by a Health and Labour Sciences Research grant from the Ministry of Health, Labour and Welfare of Japan. Spanish Neonatal Network is supported by funds from the Spanish Neonatal Society. The National Quality Registry for Neonatal Care is funded by the Swedish Government (Ministry of Health and Social Affairs) and the body of regional health care providers (county councils). Swiss Neonatal Network is partially funded by participating units in the form of membership fees. The Tuscany Neonatal Network is funded by the Tuscany Region. The United Kingdom Neonatal Collaborative receives no core funding. The funding bodies played no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.

REFERENCES

Survival in Very Preterm Infants: An International Comparison of 10 National Neonatal Networks
Kjell Helenius, Gunnar Sjörs, Prakesh S. Shah, Neena Modi, Brian Reichman, Naho Morisaki, Satoshi Kusuda, Kei Lui, Brian A. Darlow, Dirk Bassler, Stellan Håkansson, Mark Adams, Maximo Vento, Franca Rusconi, Tetsuya Isayama, Shoo K. Lee, Liisa Lehtonen and on behalf of the International Network for Evaluating Outcomes (iNeo) of Neonates

Pediatrics originally published online November 21, 2017;

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://pediatrics.aappublications.org/content/early/2017/11/17/peds.2017-1264